
Computers & Industrial Engineering 157 (2021) 107279

Available online 30 March 2021
0360-8352/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

An adaptive large neighborhood search for the multiple-day music
rehearsal problems

Pisit Jarumaneeroj a,b,*, Noppadon Sakulsom c

a Department of Industrial Engineering, Chulalongkorn University, Thailand
b Regional Centre for Manufacturing Systems Engineering, Chulalongkorn University, Thailand
c Department of Logistics Engineering, University of the Thai Chamber of Commerce, Thailand

A R T I C L E I N F O

Keywords:
Adaptive large neighborhood search
Music rehearsal problem
Capacitated vehicle routing problem
Scheduling

A B S T R A C T

This paper presents an Adaptive Large Neighborhood Search (ALNS) framework to solve the Multiple-Day Music
Rehearsal Problem (MMRP), where music pieces with different player sets and durations are arranged in a
predefined number of rehearsal days so that the total days of attendance and waiting times experienced by all
players are minimized. Two variants of the MMRP, namely the MMRP without setup times (MMRP-0) and the
MMRP with setup times (MMRP-1), are herein explored based on mathematical formulations of the Capacitated
Vehicle Routing Problem (CVRP) and the Music Rehearsal Problem (MRP). Extensive computational results on
120 generated instances and 78 benchmark instances indicate that the ALNS is greatly efficient as it can provide
equivalent or better solutions than the exact method and a benchmark heuristic from the literature, with much
less computational time. We also find that the ALNS tends to perform better in large and complicated MMRP
settings, considering that it outperforms the time-restricted CPLEX in 34 out of 120 generated instances and
successfully finds 4 new best-known solutions to 8 large benchmark instances.

1. Introduction

Music rehearsal is crucially important for the success of any concerts
and orchestral performances, where a collection of both musical in-
struments and musicians must be present at the rehearsal place on the
period at which a particular music piece is rehearsed. Since different
music pieces may require different sets of players, and there are typically
a number of music pieces to be rehearsed for each event, inattentive
music piece arrangement may result in a delay — and so the total
rehearsal cost due to an increase in both numbers of rehearsal and show-
up days experienced by all players. In order to reduce such cost, music
piece scheduling must be adequately and efficiently administered,
where we will refer to such a problem as the Music Rehearsal Problem
(MRP).

The very first MRP was presented by Adelson, Norman, and Laporte
(1976), whose concern lay with the arrangement of music pieces that
minimized total man-hours spent by all players. In their MRP model, a
player must arrive at the rehearsal place by the time of the first piece he
plays and leaves immediately after his last performance, which may not
necessarily be the last of the day. While the authors could adroitly solve
the underlying MRP by a Dynamic Programming (DP) approach,

unfortunately, due to the curse of dimensionality (Bellman, 1957), the
applicability of such an approach was deemed limited, especially for
practical MRP instances with a large number of players. Smith (2003),
later on, explored the MRP with a more specific objective, that is, to
minimize total idling (waiting) times experienced by all players at the
rehearsal place. In order to visualize this issue, let us consider an
example of a simple rehearsal plan with nine music pieces and five
players as shown in Fig. 1. If player i is involved with music piece j, the
element (i, j) in the figure will be 1; and, 0, otherwise. Based on this
music piece sequence (1–2–3–4–5–6–7–8–9), Player 1 must stay at the
rehearsal place all day, and the total waiting time for such a player can
be determined by the sum of the durations of music pieces 2, 4, 5, and 7
— which is 11 time units. As opposed to Player 1, Player 2 may arrive at
the beginning of the third performance, i.e. music piece 3, and he may
leave at the end of the eighth performance, as he is not involved with the
last music piece of the day. The waiting time experienced by Player 2 is,
therefore, the duration of the fifth music piece, which is four time units.
In sum, this sequence yields a total of 39 time units of waiting. However,
if we rearrange the sequence of music pieces into 8–4–1–7–6–3–9–2–5 as
shown in Fig. 2, the total waiting time could be significantly reduced to
nine, which is equivalent to a 77% reduction in waiting time. Although,

* Corresponding author at: Department of Industrial Engineering, Chulalongkorn University, Thailand.
E-mail address: pisit.ja@chula.ac.th (P. Jarumaneeroj).

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

https://doi.org/10.1016/j.cie.2021.107279
Received 13 April 2020; Received in revised form 25 August 2020; Accepted 25 March 2021

mailto:pisit.ja@chula.ac.th
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2021.107279
https://doi.org/10.1016/j.cie.2021.107279
https://doi.org/10.1016/j.cie.2021.107279
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2021.107279&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers & Industrial Engineering 157 (2021) 107279

2

Constraint Programming (CP) was introduced as a solution approach for
this MRP variant, due to its complexity and comparatively long
computational time, Smith (2003) found that solving large MRP in-
stances by the CP was less likely.

Another class of problems that most relates to the MRP is the Film
Production Scheduling Problem (FPSP), first introduced by Cheng,
Diamond, and Lin (1993), where a film producer needs to sequence a
series of shooting scenes such that the total cost of actors — or the talent
cost — is minimized. In the FPSP, talent cost is incurred based on hold
days — the number of days at which an actor is present at the shooting
place regardless of the scenes shot. Furthermore, the filming is divided
into a number of shooting days, each with different numbers of pre-
defined scenes and required actors. Observably, the underlying FPSP is
equivalent to the single-day MRP defined by Smith (2003), where
shooting days and hold days correspond to music pieces and waiting
time slots in the context of MRP, respectively. Cheng et al. (1993)
applied a Branch and Bound (BB) method to the FPSP as a primary so-
lution strategy and later devised a two-phase heuristic capable of solving
larger FPSP instances (with more than 15 shooting days) within an
acceptable computational period. de la Banda, Stuckey, and Chu (2011)
instead solved the FPSP by a modified DP with double-ended search,
which resulted in a drastic improvement in terms of both solution
quality and computational time when compared to that of Cheng et al.
(1993). Recently, Qin, Zhang, Lim, and Liang (2016) have extended the
concept of double-ended search, along with other accelerating tech-
niques — including preprocessing, dominance rules, and caching search
states — to enhance the performance of BB. They found that this
enhanced branch-and-bound algorithm significantly outperformed
those of Cheng et al. (1993) and de la Banda et al. (2011) in all aspects.

While attention has been paid mostly to the FPSP — or, equivalently,
the single-day MRP — more advanced FPSP/MRP settings have also
been investigated by Bomsdorf and Derigs (2008), Wang, Chuang, and
Lin (2016) and Sakulsom and Tharmmaphornphilas (2014). More
formally, Bomsdorf and Derigs (2008) studied and developed a decision
support system for a more general FPSP, called the Movie Shoot
Scheduling Problem (MSSP), that took into account several practical
constraints pertaining to the required resources and filming atmosphere.
Wang et al. (2016) generalized the FPSP by incorporating daily shooting
capacity into the problem, implying that the total duration of shooting

must not exceed the daily shooting limit. Based on this restriction, scene
arrangement and talent scheduling were then combined and solved in a
multi-phase manner, where shooting scenes were first allocated into
each working day based on simple bin-packing heuristics; and, once
completed, the resulting solutions were subsequently improved by a
combination of Iterated Local Search (ILS) and Tabu Search (TS) in the
latter phase.

Sakulsom and Tharmmaphornphilas (2014), on the other hand,
focused more on a complicated MRP where music pieces were allowed to
be rehearsed in multiple rehearsal days — each with a daily rehearsal
limit like Wang et al. (2016). Fig. 3, for instance, shows an example of a
simple two-day rehearsal plan with 14 music pieces, five players, and a
daily rehearsal limit of 20 time units.

The objective of their study was to determine the sequence of music
pieces that minimized the total number of show-up days, together with
the resulting waiting times, experienced by all players. A two-phase
method was devised to help solve the problem, where initial solutions
were constructed based on the concept of cell formation (Sakulsom &
Tharmmaphornphilas, 2011); and, once done, the sequences of music
pieces that yielded the minimum waiting times were then determined by
an Integer Programming (IP) model. While their approach is interesting
in several aspects, the resulting solutions might be locally optimal as the
whole MRP is disaggregated into sub-problems and solved sequentially.

In contrast to the previous literature, this paper attempts to provide
single-stage mathematical formulations for this so-called Multiple-Day
Music Rehearsal Problem (MMRP) and its practical variant, where
additional setup time occurs whenever there is a change on player sets
between two consecutively scheduled music pieces. For ease of discus-
sion, the MMRP without setup times and the MMRP with setup times
will be hereby referred to as the MMRP-0 and MMRP-1, respectively. In
terms of problem settings, the MMRP-0 is equivalent to the MRP
investigated by Sakulsom and Tharmmaphornphilas (2014), while the
MMRP-1 differs slightly as we include setups between music pieces into
consideration. The formulations of both MMRP-0 and MMRP-1 are
based on the mathematical formulations of two well-known 𝒩℘-hard
problems — namely the Capacitated Vehicle Routing Problem (CVRP)
and the MRP (Lenstra & Rinnooy Kan, 1981; Cheng et al., 1993;
Sakulsom & Tharmmaphornphilas, 2014) — where a thorough discus-
sion of the underlying problems, along with their associated IP formu-
lations, is provided in Section 2. As both MMRP-0 and MMRP-1 are
𝒩℘-hard — by a reduction from either the CVRP or the MRP — an
Adaptive Large Neighborhood Search (ALNS) is therefore devised to
help solve practically large MMRP-0 and MMRP-1 instances. The
detailed implementation of the proposed ALNS is provided in Section 3,
followed by intensive experimental results in Section 4. Lastly, Section 5
concludes our work and some future research directions.

2. Problem definition

The Multiple-Day Music Rehearsal Problem (MMRP) concerns the
finding of an optimal sequence for both music pieces and players in a
predefined number of rehearsal days so that the total cost associated
with player attendance and idling is minimized. Two variants of the
MMRP will be discussed in this paper, namely the MMRP without setup
times (MMRP-0) and the MMRP with setup times (MMRP-1). Similar to
Sakulsom and Tharmmaphornphilas (2014), the daily rehearsal limit is
fixed over the planning horizon. Music pieces may also differ in terms of
both music durations and required players. Players must be present at
the rehearsal place by the times at which the first music pieces they
perform start, and they may immediately leave once their last perfor-
mances — not necessarily be the last of the day — have ended. Since the
players are paid based on the days they show up and improper music
piece scheduling would only create unnecessary waiting that leads to an
increase commitment, the objective of our MMRPs is therefore defined
as to minimize the total cost of show-up and waiting experienced by all
players. Though, the objective of MMRP-1 differs slightly from that of

Music Piece 1 2 3 4 5 6 7 8 9
Player 1 1 0 1 0 0 1 0 1 1
Player 2 0 0 1 1 0 1 1 1 0
Player 3 1 0 1 1 1 1 1 0 1
Player 4 1 1 1 0 1 1 1 0 1
Player 5 0 1 1 0 0 1 0 0 1
Duration 2 3 2 1 4 5 3 4 3

Fig. 1. A solution to a single-day music rehearsal problem (waiting slots
in grey).

Music Piece 8 4 1 7 6 3 9 2 5
Player 1 1 0 1 0 1 1 1 0 0
Player 2 1 1 0 1 1 1 0 0 0
Player 3 0 1 1 1 1 1 1 0 1
Player 4 0 0 1 1 1 1 1 1 1
Player 5 0 0 0 0 1 1 1 1 0
Duration 4 1 2 3 5 2 3 3 4

Fig. 2. A modified solution to a single-day music rehearsal problem with the
least waiting time (waiting slots in grey).

P. Jarumaneeroj and N. Sakulsom

Computers & Industrial Engineering 157 (2021) 107279

3

MMRP-0 as we also include setups between music pieces into consid-
eration. The concept of setups in the MMRP-1 is quite similar to that of
manufacturing systems where additional time is needed to clear, pre-
pare, and set the stage for the next music pieces to be rehearsed. For
simplicity, we assume that the setup time between two consecutively
scheduled music pieces is proportional to the difference between player
sets required by them, including both present and absent players.

2.1. The Multiple-Day Music Rehearsal Problem without Setup Times
(MMRP-0)

2.1.1. Sets and parameters

• I is a set of music pieces, ranging from 1 to N.
• Iϕ is a set of music pieces, including a fictitious node ϕ denoting the

beginning of each rehearsal day.
• P is a set of players.
• D is a set of rehearsal days.
• K is a set of performance orders in each rehearsal day.
• Q is a daily available rehearsal limit.
• M is a large integer number.
• di denotes the duration of music piece i ∈ Iϕ, where dϕ = 0.
• ca denotes a player’s daily wage.
• cb denotes penalty cost from waiting, i.e. player’s hourly wage.
• playpi is a parameter indicating whether player p ∈ P is required for

music piece i ∈ I; where,

playpi =

{
1 , player p ∈ P plays music piece i ∈ I,
0 , otherwise.

2.1.2. Decision variables

• rd
i is a nonnegative integer decision variable representing the order of

music piece i ∈ I on rehearsal day d ∈ D, i.e. r1
A = 1 indicates that

music piece A is the first to be rehearsed on day 1.
• xd

ij is a binary decision variable indicating whether music piece i ∈ I is
rehearsed before j ∈ I on rehearsal day d ∈ D.

• zd
i is a binary decision variable indicating whether music piece i ∈ I is

rehearsed on rehearsal day d ∈ D.
• yd

ik is a binary decision variable indicating whether music piece i ∈ I
is rehearsed as the kth performance of rehearsal day d ∈ D.

• pldpik is a binary decision variable indicating whether player p ∈ P
plays music piece i ∈ I, which has been rehearsed as the kth perfor-
mance of rehearsal day d ∈ D.

• sd
pk is a binary decision variable indicating whether player p ∈ P is at

the rehearsal place during the kth performance of rehearsal day
d ∈ D.

• pd
pk is a binary decision variable indicating whether player p ∈ P is

required during the kth performance of rehearsal day d ∈ D.
• ad

pk is a binary decision variable indicating the presence of player p ∈

P in the kth performance of rehearsal day d ∈ D as his first perfor-
mance, where it takes the value of one since then until the end of the
day.

• ldpk is a binary decision variable indicating the presence of player p ∈

P in the kth performance of rehearsal day d ∈ D as his last perfor-
mance, where it takes the value of one from the beginning of the day
until such a performance.

• wd
pk is a binary decision variable indicating whether player p ∈ P is

idling at the rehearsal place during the kth performance of rehearsal
day d ∈ D.

• waitd
pik is a binary decision variable indicating whether player p ∈ P is

idling at the rehearsal place while music piece i ∈ I is performed as
the kth performance of rehearsal day d ∈ D.

• ud
p is a binary decision variable indicating whether player p ∈ P is

required at the rehearsal place on day d ∈ D; but, ud
p = 0, if player p ∈

P is required on day d ∈ D, and ud
p = 1, otherwise.

• comed
p is a binary decision variable indicating the presence of player

p ∈ P on rehearsal day d ∈ D.

2.1.3. Mathematical formulation of the MMRP-0
The IP formulations of both MMRP-0 and MMRP-1 are developed

based on two different models, that is, the Capacitated Vehicle Routing
Problem (CVRP) and the Music Rehearsal Problem (MRP), where the
rehearsal days and music pieces may be regarded as vehicle routes and
customers in the CVRP setting. Every time a vehicle moves from one
location to another — or music pieces in the context of MRP — the ca-
pacity of a vehicle is gradually consumed by music piece duration. The
daily rehearsal limit is, thus, equivalent to the capacity of a vehicle. For
clarity, Fig. 4 shows an example of a two-day MRP in the CVRP setting.
In this example, nine music pieces (A - I) are arranged in two rehearsal
days — five on day 1 and four on day 2 — with only three involved
players. Observe that the order of music pieces rehearsed on day d is
preserved by the CVRP decision variable xd

ij, where xd
⋅j could take the

value of one only if the decision variable zd
j equals one. These decision

variables will be later linked with the MRP decision variable yd
ik via a

counter decision variable rd
i that defines the order of music pieces to be

rehearsed on each rehearsal day.
Objective Function

MinZ = ca

∑

p∈P

∑

d∈D
comed

p + cb

∑

p∈P

∑

i∈I

∑

k∈K

∑

d∈D
waitd

pik⋅di (1)

Similar to Sakulsom and Tharmmaphornphilas (2014), as we do as-
sume that players are paid based on show-up days, improper music piece
scheduling would only create unnecessary waiting that leads to an in-
crease in days of attendance — and so the total rehearsal cost. The

Day Day 1 Day 2
Music Piece 7 9 6 1 13 8 2 3 4 12 10 5 11 14
Player 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0
Player 2 1 0 0 0 0 0 0 1 1 1 1 1 1 0
Player 3 0 1 1 0 1 1 1 0 0 0 1 1 1 1
Player 4 1 1 1 0 0 0 0 1 1 0 1 1 1 1
Player 5 1 1 1 1 0 0 0 0 0 1 0 0 0 0
Duration 3 4 4 1 2 2 4 4 3 1 4 2 3 3

Fig. 3. An example of a two-day rehearsal plan with 14 music pieces, five players, and a daily rehearsal limit of 20 time units (waiting slots in grey).

P. Jarumaneeroj and N. Sakulsom

Computers & Industrial Engineering 157 (2021) 107279

4

objective function of MMRP-0, as shown in Eq. (1), is therefore defined
so that the total cost of show-up and waiting experienced by all players is
minimized.
Constraints

Considering that the MMRP-0 is a combination between the CVRP
and the MRP, its corresponding sets of constraints are therefore
comprised of those from both problems as follows.
∑

i∈Iϕ

xd
ij = zd

j , ∀j ∈ I, d ∈ D (2)

∑

j∈Iϕ

xd
ij = zd

i , ∀i ∈ I, d ∈ D (3)

∑

i∈I
xd

ϕi = zd
ϕ,∀d ∈ D (4)

∑

d∈D
zd

i = 1, ∀i ∈ I (5)

∑

i∈Iϕ

di⋅zd
i ≤ Q⋅zd

ϕ, ∀d ∈ D (6)

Similar to the CVRP, flow conservation is preserved by Eqs. (2) and
(3), while Eq. (4) helps define the initiation of rehearsal day d ∈ D. Each
music piece is assigned to exactly one rehearsal day by Eq. (5); and, in
each rehearsal day, the total time spent must not exceed the daily
available rehearsal limit (Q) as imposed by Inequality (6).

zd
ϕ ≥ zd+1

ϕ ,∀d ∈ D\|D| (7)

rd
j ≥ xd

ϕj − M
(

1 − xd
ϕj

)
, ∀j ∈ I, d ∈ D (8)

rd
j ≥ rd

i + xd
ij − M

(
1 − xd

ij

)
, ∀i, j ∈ I, d ∈ D (9)

Constraint (7) controls the initiation of new rehearsal days, where a
new rehearsal day could be initiated only when the previous days exist.
The sequence of music pieces on rehearsal day d ∈ D — or equivalently
rd

i — is defined by Inequalities (8) and (9), which are equivalent to
subtour elimination constraints in the context of CVRP.

Music piece scheduling is defined by Constraints (10) – (12), where
Inequality (10) states that at most one music piece can be rehearsed in

one particular performance order of a day, while Eqs. (11) and (12)
ensure that each piece will definitely be rehearsed. The CVRP counter
decision variable rd

i is then linked with the binary decision variable yd
ik as

to define the performance sequence on each rehearsal day by Constraint
(13). Lastly, Eqs. (14) and (15) prescribe the presence of required
players during the day.
∑

i∈I
yd

ik ≤ 1, ∀k ∈ K, d ∈ D (10)

∑

k∈K

∑

d∈D
yd

ik = 1, ∀i ∈ I (11)

∑

k∈K
yd

ik = zd
i , ∀i ∈ I, d ∈ D (12)

∑

k∈K
k⋅yd

ik = rd
i , ∀i ∈ I, d ∈ D (13)

pld
pik = yd

ik⋅playpi ,∀p ∈ P, i ∈ I, k ∈ K, d ∈ D (14)

pd
pk =

∑

i∈I
pld

pik , ∀p ∈ P, k ∈ K, d ∈ D (15)

To better explain Eqs. (13) – (15), let us consider music piece E in
Fig. 4, which is the last performance of day 1. As music piece E is the fifth
performance of day 1, it follows from the previous CVRP constraints that
r1

E = 5 and z1
E = 1. Moreover, since yd

ik is a binary decision variable and k
is a positive integer number, Eq. (13) would lead to

∑
k∈Kk⋅y1

Ek = r1
E = 5,

or equivalently y1
E5 = 1 — implying that music piece E is rehearsed as the

fifth performance of day 1. Once, the performance order of music piece E
is defined, we can then entail a set of players required for music piece E
by Eqs. (14) and (15), i.e. pl11E5 = pl12E5 = 1 and p1

15 = p1
25 = 1,

respectively.

ad
pk ≥ pd

pk ,∀p ∈ P, k ∈ K, d ∈ D (16)

ld
pk ≥ pd

pk , ∀p ∈ P, k ∈ K, d ∈ D (17)

ad
pk ≤ ad

p(k+1) , ∀p ∈ P, k ∈ K\|K|, d ∈ D (18)

Fig. 4. An example of a two-day MRP without setup times (MMRP-0), with nine music pieces and three players, illustrated in a CVRP setting — where players in grey
cells are required for the music pieces.

P. Jarumaneeroj and N. Sakulsom

Computers & Industrial Engineering 157 (2021) 107279

5

ld
pk ≥ ld

p(k+1) ,∀p ∈ P, k ∈ K\|K|, d ∈ D (19)

sd
pk ≥ ad

pk + ld
pk − 1,∀p ∈ P, k ∈ K, d ∈ D (20)

Inequalities (16) – (20) are adapted from Sakulsom and Tharmma-
phornphilas (2014), where Constraints (16) and (17) help force players
to arrive and leave at proper time periods, while Constraints (18) – (20)
help define the time periods at which the players must stay in the
rehearsal place. In order to visualize this set of constraints, let us
consider a sequence of music pieces performed on day 1 of the example
shown in Fig. 4; but, we will emphasize only on the first player —
namely, Player 1 (see Fig. 5 for more details). Based on this sample
sequence A − B − C − D − E, Player 1 must arrive at the beginning of music
piece B and he may leave once music piece D ends. In this case, by the
definitions of ad

pk and ldpk, a1
1k will take the value of one from the second

performance (k = 2) until the end of the day (k = 5), while l11k will take
the value of one from the first performance (k = 1) until the one that he
last performs, i.e. music piece D with k = 4. Based on the values of a1

1k

and l11k, the time period for which Player 1 must stay in the rehearsal
place (s1

1k) — from the second to the fourth performance — can be
determined by Constraint (20), as shown in Table 1.

Since we know exactly when a player arrives and leaves the rehearsal
place, from sd

ik, the waiting time that a player experiences can then be
defined by Constraints (21) and (22), where Inequality (22) links the
order of scheduled music pieces defined by Eq. (21) with actual music
durations in the objective function.

wd
pk = sd

pk − pd
pk , ∀p ∈ P, k ∈ K, d ∈ D (21)

waitd
pik ≥ wd

pk + yd
ik − 1, ∀p ∈ P, i ∈ I, k ∈ K, d ∈ D (22)

For instance, based on Table 1, if we know the values of p1
1k and s1

1k,
the time period at which Player 1 must wait can be determined by Eq.
(21), as shown in Table 2. And, since we know that w1

13 = 1 and y1
C3 = 1,

thus wait1
1C3 = 1 by Inequality (22) and the fact that wait1

1C3 is a binary
decision variable. The time period at which Player 1 waits on day 1, as
denoted in the objective function, is therefore

∑
i∈P

∑
k∈Kwait1

1ik⋅di =

wait1
1C3⋅d3 = d3.

In addition to the boundary constraints for all decision variables,
Inequalities (23) and (24) makeup the last set of MMRP-0 constraints
that helps define the presence of player p ∈ P on any rehearsal day d ∈ D.
More specifically, if player p1 ∈ P is present on day d1 ∈ D, or equiva-
lently

∑
k∈Kad1

p1k ≥ 1, ud1
p1

and comed
p must equal to 0 and 1, respectively.

But, on the contrary, if
∑

k∈Kad1
p1k = 0, this player p1 is not required on

day d1, and, hence, ud1
p1

will be 1 forcing comed
p to be zero.

− comed
p + 1 ≤ M⋅ud

p , ∀p ∈ P, d ∈ D (23)

∑

k∈K
ad

pk ≤ M⋅
(

1 − ud
p

)
,∀p ∈ P, d ∈ D (24)

2.2. The Multiple-Day Music Rehearsal Problem with Setup Times
(MMRP-1)

2.2.1. Sets and parameters
Besides the index sets and parameters defined in the previous sec-

tion, we do need a parameter setupij to denote the setup time required for
rehearsing music piece j ∈ I right after music piece i ∈ I. In this setting,
we assume that the setup time between music pieces i ∈ I and j ∈ I is
proportional to the difference between required player sets. Mathe-
matically, setupij = α⋅▵ij, where α is a setup parameter and ▵ij is the
difference between player sets of music pieces i ∈ I and j ∈ I.

2.2.2. Decision variables
Likewise, an additional decision variable setd

pij is introduced to the
MMRP-1 so that waiting time experienced by player p ∈ P during setup
between music pieces i ∈ I and j ∈ I on rehearsal day d ∈ D is properly
captured.

Fig. 5. The rehearsal schedule on the first day of Fig. 4 with emphasis on the first player.

Table 1
Values of a1

1k, l
1
1k, and s1

1k for Player 1 based on Fig. 5.

Sequence (k) 1 2 3 4 5

a1
1k 0 1 1 1 1

l11k
1 1 1 1 0

s1
1k 0 1 1 1 0

Table 2
Values of p1

1k, s
1
1k, and w1

1k for the example shown in Fig. 5.

Sequence (k) 1 2 3 4 5

p1
1k 0 1 0 1 0

s1
1k 0 1 1 1 0

w1
1k 0 0 1 0 0

P. Jarumaneeroj and N. Sakulsom

Computers & Industrial Engineering 157 (2021) 107279

6

2.2.3. Mathematical formulation of the MMRP-1
Objective Function

MinZ = ca

∑

p∈P

∑

d∈D
comed

p + cb

∑

p∈P

∑

i∈I

∑

k∈K

∑

d∈D
waitd

pik⋅di

+ cb

∑

p∈P

∑

i∈Iϕ

∑

j∈I

∑

d∈D
setupij⋅setd

pij (25)

The objective function of MMRP-1, as shown in Eq. (25), slightly
differs from that of MMRP-0 as we include unproductive time from
waiting during setups into consideration, i.e. the third term. The concept
of setups in the MMRP-1 is quite similar to that of manufacturing sys-
tems as we need to spend additional time to clear, prepare, and set the
stage for the next pieces to be rehearsed. It is worth noting that, while we
may avoid unnecessarily long setup periods by arranging similar music
pieces to be rehearsed next to each other, this may, however, be inef-
ficient in terms of idling as different music pieces may require different
sets of players. Accordingly, both idling and waiting during setups
should be concurrently optimized, along with the explicit cost of player
attendance, as stated in the above objective function.
Constraints

To define the MMRP-1, we do need all constraints previously
described in the MMRP-0; but, with slight modification on Constraint (6)
so that setup times are included in the daily available rehearsal limit — as
shown in Inequality (26) below. Furthermore, Inequality (27) is needed
to help define setups between music pieces. For instance, if x1

AB = 1 and
wait1

1B2 = 1 — or equivalently, music piece B is rehearsed right after
music piece A on the first rehearsal day, but Player 1 is not involved with
music piece B, which is the second performance of a day — the duration
that Player 1 needs to wait must be computed based on both the setup
from A to B and the time spent for B, which is separately captured by set1

1AB

and wait1
1B2, respectively.

∑

j∈I

[
∑

i∈Iϕ

(
setupij⋅xd

ij

)
+ dj⋅zd

j

]

≤ Q⋅zd
ϕ ,∀d ∈ D (26)

setd
pij ≥ waitd

pjk + xd
ij − 1, ∀p ∈ P, i ∈ Iϕ, j ∈ I, k ∈ K, d ∈ D (27)

3. Methodology

While we are able to successfully formulate the IP formulations for
both MMRP-0 and MMRP-1 by a combination of two different 𝒩℘-hard
problems, it is less likely that we can solve practical instances of MMRP-
0 and MMRP-1 to optimality by any exact methods in a limited amount
of time, due to their complexity. As such, in this paper, an Adaptive
Large Neighborhood Search (ALNS) heuristic is devised to help solve
large instances of both MMRP-0 and MMRP-1.

3.1. Adaptive Large Neighborhood Search (ALNS)

The ALNS is an extension of the Large Neighborhood Search (LNS),
introduced by Shaw (1997), where a large collection of variables are
modified by several fast heuristics under an adaptive ruin-and-repair
paradigm (Schrimpf, Schneider, Stamm-Wilbrandt, & Dueck, 2000), as
illustrated in Algorithm 1 (Ropke & Pisinger, 2006a; Pisinger & Ropke,
2007).

Algorithm 1. The general framework of ALNS.
1: Input: Problem Instances and the ALNS parameter setting.
2: Create: Create an initial solution (x) and set xbest←x.
3: While stopping criteria have not been met do
4: Select: Select q requests to be destroyed and repaired.
5: Destroy: Choose a destroy operator (N−) based on its probability πN− .
6: Repair: Choose a repair operator (N+) based on its probability πN+ .
7: Evaluate: Evaluate new solution (x′

).
8: If x′ is accepted then

(continued on next column)

(continued)

9: Update: x←x′

10: Update: Update probability πN− and πN+

11: End If
12: If f(x) < f(xbest) then
13: Update: xbest←x
14: End If
15: End While
16: Return: xbest .

In each iteration of the ALNS, q requests are removed and reinserted
back to the incumbent solution by different destroy and repair heuris-
tics, whose selection probabilities adaptively change based on their
previous performances. These selection probabilities are initially set
equally for all heuristics at the beginning of the search (segment); and, at
the end of each iteration, they will be reassessed based on the quality of
generated solution. While pairs of heuristics that provide new best-
known or incremental improvement solutions should definitely be
rewarded with higher selection probabilities, pairs of heuristics that
provide inferior solutions are also eligible for rewards in the typical
ALNS setting. This is due to the fact that they could help diversify search
space and avoid being trapped at local extrema.

When compared to other well-known searches, such as the Variable
Neighborhood Search (VNS), the ALNS is advantageous due to its flex-
ibility with much less restrictions on neighborhood structure and
parameter settings in the destroy-repair phase. In particular, the ALNS
works only on a set of predefined removal and repair operators, whereas
the VNS heavily relies on a highly structured neighborhood with vari-
able depth (Pisinger & Ropke, 2007). The ALNS is found to be one of the
promising metaheuristics in logistical domains, as it could improve best-
known solutions of several standard benchmark Vehicle Routing Prob-
lem (VRP) instances as reported by Ropke and Pisinger (2006a, 2006b)
and Pisinger and Ropke (2007). In addition, the ALNS has been suc-
cessfully applied to a variety of VRP variants, including the Vehicle
Routing Problem with Multiple Routes (Azi, Gendreau, & Potvin, 2014;
Francois, Arda, & Crama, 2019), the Share-a-Ride Problem (Li, Krush-
insky, Woensel, & Reijers, 2016), the Pickup and Delivery Problem with
Time Windows and Scheduled Lines (Ghilas, Demir, & Woensel, 2016),
the Mechanical Harvester Assignment and Routing Problem with Time
Windows (Pitakaso & Sethanan, 2019), and the Two-Echelon Inventory
Routing Problem with Perishable Products (Rohmer, Claassen, &
Laporte, 2019), with different sets of destroy and repair operators that
well suit the problems.

Hybridized algorithms between the ALNS and other well-known
heuristic frameworks were also explored by Muller, Spoorendonk, and
Pisinger (2012), Qu and Bard (2012) and Koc, Bektas, Jabali, and
Laporte (2015). In Muller et al. (2012), the ALNS was combined with a
Mixed Integer Programming (MIP) solver in the repairing phase of the
Multi-Item Capacitated Lot Sizing Problem with Setup Times. Qu and
Bard (2012), on the other hand, applied the ALNS along with the Greedy
Randomized Adaptive Search Procedure (GRASP) to the Pickup and
Delivery Problems with Transshipment, where the ALNS was called
upon to improve initial solutions constructed by the GRASP in a two-
phase fashion. Instead of using a Simulated Annealing (SA) framework
for the search, Koc et al. (2015) have recently introduced a very inter-
esting Hybrid Evolutionary Algorithm (HEA) that combined the concept
of well-known Genetic Algorithms (GA) (Coello, Lamont, & Van Veld-
huizen, 2007) with the ALNS framework to four different types of the
Heterogenous Fleet Vehicle Routing Problems with Time Windows. In
their proposed HEA, the initial population was first constructed based on
a modified Clarke-Wright Savings algorithm with selected ALNS fea-
tures. Once the number of initial solutions reached a predefined number
(np), the evolutionary search was then executed through the GA
framework, where the ALNS was applied as to intensify the set of elite
solutions during the search.

P. Jarumaneeroj and N. Sakulsom

Computers & Industrial Engineering 157 (2021) 107279

7

3.2. Overall structure of the proposed ALNS

Our proposed ALNS differs from others found in the existing litera-
ture due to the MMRP’s unique characteristics, where similarity values
have played an important role in both construction and improvement
phases of the algorithmic framework. Conceptually, the similarity value
is a measure of music piece closeness in terms of both present and absent
player sets — it could be regarded as an extension of the bit-flip concept
proposed by Sakulsom and Tharmmaphornphilas (2014). More specif-
ically, if A and A′ denote a player-piece array and its bit-flip counterpart,
the similarity array of music pieces in terms of player sets (S) could be
defined by AT⋅A + (A′

)
T⋅A′ , where AT⋅A presents the similarity array of

music pieces in terms of present players, and, likewise, (A′

)
T⋅A′ presents

the similarity array of music pieces in terms of absent players.
In our ALNS setting, the similarity values between pairs of music

pieces will be first calculated and used for the construction of an initial
solution by a simple greedy heuristic. Once the initial solution is created,
it will then undergo a series of adaptive destroy-repair procedure until
one of the stopping criteria has been met. The initial weight and prob-
ability of each operator are set equally at the beginning of the search and
adaptively updated based on its performance. More formally, δ1 is
awarded for pairs of operators providing new global best solutions (Fbest)

, δ2 is awarded for the pairs with incremental improvement, and, lastly,
δ3 is awarded for those with new solutions. It is worth noting that
inferior solutions may be accepted in this framework as to avoid being
stuck at local solutions by a Simulated Annealing (SA) approach. Algo-
rithm 2 below illustrates the overall structure of the proposed ALNS,
where two stopping criteria have been set: (i) the number of predefined
iterations (Itmax) has been reached and (ii) the best-known solution is not
improved for a fixed number of iterations (Itw).

Algorithm 2. The overall structure of the proposed ALNS for MMRP-
0 and MMRP-1.

1: Input: Problem Instances and the ALNS parameter setting.
2: Compute: Compute the Similarity array (S).
3: Create: Create an initial solution (F0) by a simple greedy heuristic (IntGen) and set

F0 as the global best solution (Fbest).
4: While stopping criteria have not been met do
5: Select: Randomly select number of music pieces (q) to be removed from the

incumbent solution.
6: Destroy: Randomly select a destroy operator based on its weight and

probability (Destroy).
7: Repair: Randomly select a repair operator based on its weight and probability

(Repair).
8: Evaluate: Evaluate new solution (F′

).
9: If F′ is better than the current Fbest then
10: Update: Fbest←F′

11: Else
12: Select: Apply Simulated Annealing (SA) for the acceptance of F′ .
13: End If
14: Adjust: Adjust the weights, and so the probabilities, of all operators (W − adj).
15: End While
16: Return: The rehearsal schedule.

Based on Algorithm 2, there are several sub-computational modules
required for the generation of rehearsal schedule as follows.

• IntGen is a sub-computational module for the creation of initial so-
lution (F0).

• Destroy and Repair are sub-computational modules that will be
repeatedly called for solution improvement.

• SA is an escape mechanism that accepts inferior solutions based on
the concept of Simulated Annealing.

• W − adj is a weight adjustment module that updates the weights and
so probabilities of all destroy and repair operators.

3.2.1. IntGen
IntGen generates an initial solution to the MMRP based on the

similarity array (S), where an initial music piece is randomly selected
and placed as the first performance of a day. Unassigned music pieces
are then appended to the current music piece, one at a time, based on the
similarity values with respect to such a piece. Nevertheless, the selected
music piece is eligible only if its duration is less than or equal to the
remaining rehearsal period on such a date. If this condition does not
hold true, the next highest similarity music piece will be checked, or a
new rehearsal day will be initiated. And, if it is the latter case, the whole
process will be repeated over and over again until all pieces are assigned,
as shown in Algorithm 3.

Algorithm 3. The detailed structure of IntGen.
1: Input: Problem Instances, Similarity Array (S), Unassigned Music Pieces (P), Empty

Rehearsal Plan (Ph).
2: Initialization: Set the rehearsal period d to 0.
3: While P is not empty do
4: Select: Randomly select pc ∈ P and set it as the first to be rehearsed.
5: Update: P←P⧹pc,Ph←pc, and d←d + dpc .
6: Sort: Sort P based on the similarity value S with respect to the last music piece of

Ph, namely pc, and let P be such a sorted list.
7: While d ∕= 0 and d < Q do
8: Select: Select the first element in P, denoted by p1.
9: If d+dp1

≤ Q then
10: Append: Append p1 to Ph.
11: Update: P←P⧹p1,Ph←p1,pc←p1, and d←d + dp1

.
12: Update: Update P with respect to pc.
13: Else
14: If p1 is not the last in the list P then
15: Update: Update P with P⧹p1.
16: Else
17: If p1 is the last in the list P then
18: Open: Open a new rehearsal day and reset d to 0.
19: End If
20: End If
21: End If
22: End While
23: End While
24: Return: The initial rehearsal schedule (Ph).

3.2.2. Destroy
There are three destroy operators in this proposed ALNS, each of

which removes between ql and qu music pieces from the incumbent
solution, as follows.

1. Random Removal (D1): Random removal randomly removes music
pieces until the predefined number of removals is reached.

2. Worst Removal (D2): Worst Removal sequentially removes music
pieces that give the maximum cost reduction when compared to that
of the base solution, one at a time, until the predefined number of
removals is reached.

3. Shaw Removal (D3): Shaw removal focuses on the removals of
related music pieces so that removals and repairs are easily executed
(Shaw, 1998). In the literature, Shaw removal is usually defined by
relatedness between elements i and j (γij), where we define γij by the
similarity of player sets between music pieces i and j as shown in Eq.
(28).

γij = φ1
(
AT

i. ⋅A.j
)
+φ2

((
A

′

i.

)T
⋅A′

.j

)
, (28)

where A and A′ are player-piece array and its bit-flip counterpart,
and φ1 and φ2 are normalization weights, with φ1 = φ2 = 1.

Shaw Removal may be further defined based on the values of φ1
and φ2. For instance, if we are interested only in the change of pre-
sent players, we may set φ1 = 1 and φ2 = 0, i.e. Present-Based
Removal. On the contrary, we may set φ1 = 0 and φ2 = 1 in a case
where emphasis has been put on the change of absent players (Ab-
sent-Based Removal) like that of Sakulsom and

P. Jarumaneeroj and N. Sakulsom

Computers & Industrial Engineering 157 (2021) 107279

8

Tharmmaphornphilas (2014).

Besides those three destroy operators, we also applied two local
search heuristics, namely 2-exchange (2EX) and 3-exchange (3EX),
during the destroy-repair phase.

1. 2-exchange (2EX): In each iteration of 2EX, all music pieces from the
ith to the jth positions are removed and reconnected in a reverse order.
For example, given a rehearsal plan (1,2,3,4,5,6), if music pieces 2
and 5 are selected under 2EX operator, 2EX will return a modified
rehearsal plan (1,5, 4,3, 2,6) as a new solution.

2. 3-exchange (3EX): In each iteration of 3EX, three different music
pieces will be selected and all or parts of their music strings will be
swapped with the adjacent music strings. For instance, given a
rehearsal plan (1, 2, 3, 4, 5, 6, 7, 8), if music pieces 1, 3, and 6 are
selected under 3EX operator, 3EX will return a modified rehearsal
plan (2, 1,4, 3,5, 7,6, 8) as one plausible solution — there are about
seven 3EX solutions due to partial exchange.

3.2.3. Repair
There are four types of repair operators deployed in this ALNS,

whose detailed information is described below.

1. Random Insertion (R1): Random insertion randomly and
sequentially places unassigned music pieces back to the incum-
bent solution until all pieces are scheduled.

2. Greedy Insertion (R2): Greedy insertion places unassigned music
pieces back to the incumbent solution, one at a time, in such a
way that the incremental cost of rehearsal is minimized.

3 – 4. Regret-2 and Regret-3 Insertions (R3 − R4): The concept of Regret
insertion is quite simple, as we first place an unassigned music
piece that we will regret the most at its cheapest position; and, we
continue in this fashion until all music pieces are assigned. Regret
insertion may be regarded as an advanced greedy insertion with
look-ahead information, known as a regret value (c*

i) defined by
Eq. (29).

c*
i = ▵fi,x(i,2) − ▵fi,x(i,1) , (29)

where ▵fi,x(i,1) and ▵fi,x(i,2) denote the rehearsal costs when music piece i is
inserted at the best (x(i,1)) and the second best (x(i,2)) positions, respec-
tively. In each iteration of Regret-2 insertion, an unassigned music piece
with maxic*

i is first inserted at its best location — it should be placed now
or else we will later regret not doing so — and the procedure continues
until all pieces are assigned

For Regret-3 Insertion, the regret value is modified to Eq. (30), with
the same insertion rule as Regret-2; and, based on Eq. (30), Regret-n
insertion could be constructed by lifting the maximal value of j to n.

c*
i =

∑3

j=1

(
▵fi,x(i,j) − ▵fi,x(i,1)

)
(30)

It is worth noting that, when 2EX and 3EX are selected and executed,
no repair operator is required. And, if the resulting solution is infeasible,
no mark will be awarded to the selected destroy and repair operators.

3.2.4. SA
A standard SA procedure is applied for the acceptance of inferior

solutions, where an inferior solution (F′

) is probably accepted with an
acceptance rate of paccept defined by Eq. (31).

paccept = e−
c(F

′
)− c(F)
T , (31)

where F and c(F) are the incumbent solution and its associated cost, and
T is the temperature — initially set at Tstart and gradually reduced by β %
each iteration, i.e. the cooling rate (rc) equals 1 − β.

3.2.5. W − adj
Initially, all destroy and repair operators, as well as 2EX and 3EX, are

awarded with equal weight — and so probability. At the end of each
iteration, the weights of the selected operators will be increased by δ1 if
the resulting solution leads to a new global best one and δ2 if the
resulting solution is better than the incumbent solution. We also award a
mark of δ3 to those generating a new solution, where δ3 < δ2 < δ1.
However, no mark will be awarded if the resulting solution is infeasible.
The awarded marks will be accumulated and used for the re-
computation of selection probability from one iteration to the next
until the algorithm terminates.

4. Computational results

4.1. Instance and ALNS settings

Six different problem settings — with 10 instances each — are
generated for both MMRP-0 and MMRP-1. Each setting comprises of 10
players, P ∈ {10,12,14} music pieces, and D ∈ {2,3} rehearsal days. As
such, a total of 120 instances will be generated as testbeds for the pro-
posed ALNS. Tables 3 and 4 summarize all parameter values of the
MMRP and the ALNS used in this research — some of which are set based
on preliminary experimental runs, such as δ values, T, and rc, while the
rest are set based on previous research. When compared to Sakulsom
and Tharmmaphornphilas (2014), our generated instances are
comparatively larger with twice the number of involved players in most
cases.

4.2. Overall results on 120 generated instances

The results from ALNS are compared with those of the IP as solved by
CPLEX in terms of both solution quality and computational time; but,
due to the MMRP complexity, the computation time of CPLEX is limited
at four hours on a computer with 2.20 GHz Core2Duo processors and 4
GB of RAM. Based on this limit, CPLEX can find 29 optimal solutions out
of 120 instances — mostly the MMRP-0 — while the maximum and
average optimality gaps for the rest are 38.30% and 13.03%, respec-
tively. Among these 29 instances, the ALNS can match 28 optimal so-
lutions with significantly less computational time — about 8.82% of the
time spent by CPLEX — while the only non-optimal solution is about
1.11% worse than the optimal objective value found by CPLEX. The
comparison of computational times required by the ALNS and CPLEX on
all 120 instances are also reported in Fig. 6.

In terms of solution quality, as measured by C(ALNS)− C(CLEX)
C(CPLEX) ⋅100% —

where C(Ω) denotes the objective value found by Ω — the ALNS can find
the solutions that are as good as or better than those found by the time-
restricted CPLEX in most cases (108 out of 120 instances), while the rest
are within the maximal deviation of 5%, or about 1.36% on average, as

Table 3
Parameter settings for the MMRP.

Parameter Definition Value

I Number of music pieces {10,12,14}
P Number of players 10
D Number of rehearsal days {2,3}
K Maximum number of performance order in each

rehearsal day
{10,12,14}

QMMRP− 0 Daily available rehearsal limit for the MMRP-0 [18,45]
QMMRP− 1 Daily available rehearsal limit for the MMRP-1 [20,48]

di Duration of music piece i ∈ I [3,9]
ca Player’s daily wage 100
cb Penalty for waiting (player’s hourly wage) 10
α Setup parameter for the MMRP-1 0.1

P. Jarumaneeroj and N. Sakulsom

Computers & Industrial Engineering 157 (2021) 107279

9

illustrated in Fig. 7.
The detailed comparison of results from both ALNS and CPLEX on

MMRP-0 and MMRP-1 instances is also reported in Tables 5 and 6. With
regard to the MMRP-0 (Table 5), the ALNS can find 10 better solutions
with an average incremental improvement of 1.68%, while the average
deviation of the seven inferior solutions is just about 1.21%, with
significantly less computational times in all cases. We also find that the
ALNS tends to perform better in the complicated MMRP-1 settings

(Table 6), as it provides 24 better solutions, with an average deviation of
3.17% better than solutions from the time-restricted CPLEX, while the
average deviation of the five inferior ALNS solutions is just about 1.57%.

Regarding the destroy-repair operators, 3EX is found to be the
operator that contributes most significantly, as it possesses the highest
selection probability at the end of the search for most instances (85 out
of 120 instances). Additionally, 3EX is also found to be the most efficient
destroy-repair operator as it can find the global best solutions for about
46 instances, followed by 2EX in 43 instances, leaving D1 and R1 as the
worst destroy and repair operators with the least selection probabilities,
respectively.

4.3. Results on benchmark MMRP-0 instances

To further assess the performance of our proposed ALNS, 78 addi-
tional experiments are conducted based on instances from Sakulsom and
Tharmmaphornphilas (2014) (MMRP-0), whose settings are summa-
rized in Table 7.

Among these 78 benchmark instances, Instances 1 to 70 are regarded
as small instances with only five players, while Instances 71 through 77
are larger instances with twice the number of players; lastly, Instance 78
is a very large instance involving with 20 players, 40 music pieces, and a
comparatively long rehearsal period of five days. The comparison of

Table 4
Parameter settings for the proposed ALNS.

Parameter Definition Value

δ0 Initial weight awarded to all operators 10
δ1 Weight awarded to operators that result in a new global

best
3

δ2 Weight awarded to operators that result in a better solution 2
δ3 Weight awarded to operators that result in a new solution 1
q Number of music pieces to be removed in each ALNS

iteration
[2,4]

Tstart Initial temperature of the SA 100,000
rc Cooling rate of the SA, i.e. β = 0.01 0.99

Itmax Total number of ALSN iterations 100,000
Itw Number of iterations with no improvement 10,000

Fig. 6. Comparison of computational times required by both ALNS and CPLEX on all 120 instances.

Fig. 7. Percentages of solution deviations between the ALNS and CPLEX on all 120 instances.

P. Jarumaneeroj and N. Sakulsom

Computers & Industrial Engineering 157 (2021) 107279

10

results between the ALNS and the benchmark approach by Sakulsom and
Tharmmaphornphilas (2014), i.e. 2-phase method, on these 78 bench-
mark instances is summarized in Tables 8 and 9.

From Table 8, it can be seen that the proposed ALNS is comparatively
efficient for small to moderate instances as it provides the solutions that
are as good as those found by the 2-phase heuristic — with smaller
computational times for larger instances. Although there are seven in-
stances that the ALNS performs a bit worse, the percentage of solution
deviation among these instances is just about 1.04% on average.

The ALNS tends to perform much better in large and complicated
benchmark instances (Instances 71–78), with no inferior solution re-
ported, as shown in Table 9. In particular, the ALNS can find three new
best known solutions to Instances 71, 75, and 76. And, for a very large

problem (Instance 78), the 2-phase heuristic spent almost 6.30 h just to
determine the minimum number of show-up days, while the ALNS is
able to find a complete solution within one hour, although the number of
show-up days is slightly worse — about 1.08% when compared to that of
the 2-phase heuristic.

5. Conclusions

We have proposed an ALNS framework to solve two variants of the
MMRP, namely the MMRP without setup times (MMRP-0) and the
MMRP with setup times (MMRP-1), where a setup time occurs whenever
there is a change on player sets between two consecutively scheduled
music pieces. The proposed ALNS is found to be greatly efficient as it
requires comparatively less computational time to produce equivalent
or better solutions than the exact method and a benchmark heuristic
from the literature. In particular, out of 120 generated instances, the
ALNS can find 34 better solutions and match 74 others from the CPLEX
solver with an average computational time of 16.63% — while the
average solution deviation of 12 inferior solutions is just about 1.36%.
Regarding those 78 benchmark instances, the ALNS tends to outperform
the benchmark heuristic, especially on large benchmark instances. More
specifically, out of seven large benchmark instances, the ALNS can find
three new best known solutions. And, for the largest benchmark
instance, a complete rehearsal schedule can be successfully determined
within an hour of computation time, while the benchmark heuristic

Table 5
The computational results for MMRP-0.

Number of Average elapsed time (s) Number of solutions when compared to CPLEX

Players Pieces Days CPLEX ALNS Diff (%) Equal Better1 Worse2

10 10 2 8426.57 554.36 93.42 10 0 0
10 12 2 2877.58 111.89 96.11 9 0 1
10 14 2 14490.34 1165.27 91.96 6 2 2
10 10 3 13515.90 207.06 98.47 9 0 1
10 12 3 14535.98 1736.95 88.05 3 6 1
10 14 3 14516.78 470.28 96.76 6 2 2

[1]The percentage of solution deviation is about 1.68% better than CPLEX on average.
[2]The percentage of solution deviation is about 1.21% worse than CPLEX on average.

Table 6
The computational results for MMRP-1.

Number of Average elapsed time (s) Number of solutions when compared to CPLEX

Players Pieces Days CPLEX ALNS Diff (%) Equal Better1 Worse2

10 10 2 11152.45 646.91 94.20 9 0 1
10 12 2 4231.03 131.12 96.90 10 0 0
10 14 2 12093.33 1217.47 89.93 3 6 1
10 10 3 12447.29 309.25 97.52 7 2 1
10 12 3 4513.66 2323.49 48.52 0 10 0
10 14 3 14412.63 563.32 96.09 2 6 2

[1]The percentage of solution deviation is about 3.17% better than CPLEX on average.
[2]The percentage of solution deviation is about 1.57% worse than CPLEX on average.

Table 7
The settings of MMRP-0 benchmark instances from Sakulsom and Tharmma-
phornphilas (2014).

Instance number Number of Number of instances

Players Pieces Days for each setting

1–30 5 {10,12,14} 2 10
31–70 5 {10,12,14,16} 3 10
71–73 10 {10,12,14} 2 1
74–77 10 {10,12,14,16} 3 1

78 20 40 5 1

Table 8
The computational results of ALNS when compared to those of Sakulsom and Tharmmaphornphilas (2014) on Instances 1–70.

Instance Number of Average elapsed time (s) Number of solutions when compared to 2-phase method

Players Pieces Days 2-Phase ALNS Equal Better Worse1

1–10 5 10 2 28.81 98.06 10 0 0
11–20 5 12 2 141.38 163.70 10 0 0
21–30 5 14 2 425.16 319.64 8 0 2
31–40 5 10 3 114.87 45.23 10 0 0
41–50 5 12 3 53.00 78.75 9 0 1
51–60 5 14 3 220.68 118.94 9 0 1
61–70 5 16 3 546.44 151.76 7 0 3

[1]The percentage of solution deviation is about 1.04% worse than the 2-phase method on average.

P. Jarumaneeroj and N. Sakulsom

Computers & Industrial Engineering 157 (2021) 107279

11

spent a lot more time just to determine the minimum day of attendance
with no reported schedule.

While our focus lies on a typical rehearsal problem, with no specific
restrictions on both music pieces and players, there are several practical
constraints that could be incorporated into the MMRP, and its FPSP
counterpart, for more realistic planning. Examples include music piece
(shooting scene) precedence constraints, compatibility constraints be-
tween music pieces and rehearsed periods (shooting periods), player
preference or player availability constraints, and rehearsal place
(shooting place) related constraints, such as unequal daily rent and
availability. We may also introduce dynamism into the problem, or even
extend this present work to related problems in other domains, which
will further enrich the resulting problems — and so the development of
algorithmic framework in subsequent studies. These plausible exten-
sions include the operational decisions in a flexible manufacturing sys-
tem (FMS) — e.g. the Process Plan Selection Problem (PPSP) or the
Machine Loading Problem (MLP) investigated by Solimanpur, Sattari,
and Abazari (2012), Abazari et al. (2012) and Singh, Singh, and Khan
(2016) — as they share some common characteristics with the MMRP.
For instance, jobs, machines, and production schedules in an FMS may
be viewed as music pieces, rehearsal days, and rehearsal schedules in the
MMRP setting, respectively; although further detailed mapping is
needed between the stated problems. In light of this observation, we
expect that this present work could be adapted and applied to those
related problems, which, in turn, opens new ideas for both researchers
and practitioners in other relevant fields.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This research was supported by the Research Grant for New Scholar
Ratchadaphiseksomphot Endowment Fund Chulalongkorn University,
as well as the EU Horizon 2020 Marie Sklodowska-Curie Research and
Innovation Staff Exchange project GOLF (reference number GOLF-
777742).

References

Abazari, A., Solimanpur, M., & Sattari, H. (2012). Optimum loading of machines in a
flexible manufacturing system using a mixed-integer linear mathematical
programming model and genetic algorithm. Computers & Industrial Engineering, 62,
469–478.

Adelson, R., Norman, J., & Laporte, G. (1976). A dynamic programming formulation with
diverse applications. Operational Research Quarterly, 27(1), 119–121.

Azi, N., Gendreau, M., & Potvin, J. (2014). An adaptive large neighborhood search for a
vehicle routing problem with multiple routes. Computers & Operations Research, 41,
167173.

Bellman, R. (1957). Dynamic programming. New York: Princeton University Press.

Bomsdorf, F., & Derigs, U. (2008). A model, heuristic procedure and decision support
system for solving the movie shoot scheduling problem. OR Spectrum, 30, 751–772.

Cheng, T., Diamond, J., & Lin, B. (1993). Optimal scheduling in film product to minimize
talent hold cost. Optimization Theory and Application, 79(3), 479–492.

Coello, C., Lamont, G., & Van Veldhuizen, D. (2007). Evolutionary algorithms for solving
multi-objective problems. Springer.

de la Banda, M., Stuckey, P., & Chu, G. (2011). Solving talent scheduling with dynamic
programming. INFORMS Journal on Computing, 23(1), 120–137.

Francois, V., Arda, Y., & Crama, Y. (2019). Adaptive large neighborhood search for
multitrip vehicle routing with time windows. Transportation Science, 63(6),
17061730.

Ghilas, V., Demir, E., & Woensel, T. (2016). An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows and scheduled
lines. Computers & Operations Research, 72, 12–30.

Koc, C., Bektas, T., Jabali, O., & Laporte, G. (2015). A hybrid evolutionary algorithm for
heterogeneous fleet vehicle routing problems with time windows. Computers &
Operations Research, 64, 11–27.

Lenstra, J., & Rinnooy Kan, A. (1981). Complexity of vehicle routing and scheduling
problems. Networks, 11(2), 211–227.

Li, B., Krushinsky, D., Woensel, T., & Reijers, H. (2016). An adaptive large neighborhood
search heuristic for the share-a-ride problem. Computers & Operations Research, 66,
170–180.

Muller, L., Spoorendonk, S., & Pisinger, D. (2012). A hybrid adaptive large neighborhood
search heuristic for lot-sizing with setup times. European Journal of Operational
Research, 218, 614–623.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems.
Computers & Operations Research, 34, 24032435.

Pitakaso, R., & Sethanan, K. (2019). Adaptive large neighborhood search for scheduling
sugarcane inbound logistics equipment and machinery under a sharing infield
resource system. Computers and Electronics in Agriculture, 158, 313–325.

Qin, H., Zhang, Z., Lim, A., & Liang, X. (2016). An enhanced branch-and-bound
algorithm for the talent scheduling problem. European Journal of Operational
Research, 250, 412–426.

Qu, Y., & Bard, J. (2012). A GRASP with adaptive large neighborhood search for pickup
and delivery problems with transshipment. Computers & Operations Research, 39,
2439–2456.

Rohmer, S., Claassen, G., & Laporte, G. (2019). A two-echelon inventory routing problem
for perishable products. Computers & Operations Research, 107, 156–172.

Ropke, S., & Pisinger, D. (2006a). An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation Science, 40(4),
455–472.

Ropke, S., & Pisinger, D. (2006b). A unified heuristic for a large class of vehicle routing
problems with backhauls. European Journal of Operational Research, 171, 750–775.

Sakulsom, N. & Tharmmaphornphilas, W. (2011). A multi-objective music rehearsal
scheduling problem. In The 12th Asia Pacific industrial engineering and management
systems conference (pp. 25–29).

Sakulsom, N., & Tharmmaphornphilas, W. (2014). Scheduling a music rehearsal problem
with unequal music piece length. Computers & Industrial Engineering, 70, 20–30.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., & Dueck, G. (2000). Record breaking
optimization results – using the ruin & recreate principle. Journal of Computational
Physics, 159, 139–171.

Shaw, P. (1997). A new local search algorithm providing high quality solutions to vehicle
routing problems. Technical report, Glasgow: University of Strathclyde.

Shaw, P. (1998). Using constraint programming and local search methods to solve
vehicle routing problems. In The 4th International conference on principles and practice
of constraint programming.

Singh, R., Singh, R., & Khan, B. (2016). Meta-hierarchical-heuristic-mathematical-model
of loading problems in flexible manufacturing system for development of an
intelligent approach. International Journal of Industrial Engineering Computations, 7,
177–190.

Smith, B. (2003). Constraint programming in practice: Scheduling a rehearsal. Technical
report, Report APES-67-2003. http://www.dcs.st-and.ac.uk/apes.

Solimanpur, M., Sattari, H., & Abazari, A. (2012). Optimum process plan selection via
branch-and-bound algorithm in an automated manufacturing environment.
International Journal of Operational Research, 13(3), 281–294.

Wang, S., Chuang, Y., & Lin, B. (2016). Minimizing talent cost and operating cost in film
production. Journal of Industrial and Production Engineering, 33(1), 17–31.

Table 9
The computational results of ALNS when compared to those of Sakulsom and Tharmmaphornphilas (2014) on Instances 71–78.

Instance Number of Elapsed Time (s) Show-up Days Waiting Time Slots

Players Pieces Days 2-Phase ALNS 2-Phase ALNS Diff (%) 2-Phase ALNS Diff (%)

71 10 10 2 119.56 386.14 19 19 0 7 5 28.57
72 10 12 2 171.06 427.03 18 18 0 27 27 0
73 10 14 2 2008.06 875.74 19 19 0 23 23 0
74 10 10 3 121.19 133.86 25 25 0 3 3 0
75 10 12 3 371.12 197.18 27 27 0 5 0 100
76 10 14 3 397.54 222.31 25 25 0 17 9 47.06
77 10 16 3 671.75 691.34 25 25 0 19 19 0
78 20 40 5 22398.02 1 3799.69 93 94 − 1.08 –2 239 –

[1]This reported computational time was only from the first phase of the 2-phase heuristic.
[2]No result on waiting time slot was reported by Sakulsom and Tharmmaphornphilas (2014) due to prohibitive computational time during the scheduling phase.

P. Jarumaneeroj and N. Sakulsom

http://refhub.elsevier.com/S0360-8352(21)00183-2/h0005
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0005
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0005
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0005
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0010
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0010
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0015
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0015
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0015
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0020
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0025
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0025
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0030
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0030
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0035
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0035
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0040
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0040
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0045
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0045
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0045
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0050
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0050
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0050
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0055
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0055
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0055
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0060
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0060
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0065
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0065
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0065
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0070
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0070
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0070
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0075
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0075
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0080
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0080
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0080
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0085
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0085
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0085
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0090
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0090
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0090
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0095
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0095
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0100
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0100
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0100
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0105
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0105
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0115
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0115
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0120
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0120
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0120
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0130
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0130
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0130
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0135
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0135
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0135
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0135
http://www.dcs.st-and.ac.uk/apes
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0145
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0145
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0145
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0150
http://refhub.elsevier.com/S0360-8352(21)00183-2/h0150

	An adaptive large neighborhood search for the multiple-day music rehearsal problems
	1 Introduction
	2 Problem definition
	2.1 The Multiple-Day Music Rehearsal Problem without Setup Times (MMRP-0)
	2.1.1 Sets and parameters
	2.1.2 Decision variables
	2.1.3 Mathematical formulation of the MMRP-0

	2.2 The Multiple-Day Music Rehearsal Problem with Setup Times (MMRP-1)
	2.2.1 Sets and parameters
	2.2.2 Decision variables
	2.2.3 Mathematical formulation of the MMRP-1

	3 Methodology
	3.1 Adaptive Large Neighborhood Search (ALNS)
	3.2 Overall structure of the proposed ALNS
	3.2.1 IntGen
	3.2.2 Destroy
	3.2.3 Repair
	3.2.4 SA
	3.2.5 W-adj

	4 Computational results
	4.1 Instance and ALNS settings
	4.2 Overall results on 120 generated instances
	4.3 Results on benchmark MMRP-0 instances

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References

